Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Sci Rep ; 14(1): 7496, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553592

RESUMO

Intracranial arterial dolichoectasia (IADE) is associated with the interaction of hypertension and inflammation, and microcurrent can be effective in hypertension. Therefore, this study aimed to investigate the therapeutic effect of microcurrent electrical stimulation in a mouse IADE model. This study randomly categorized 20 mice into five groups: group 1-C (healthy control), group 2-D (IADE model), group 3-M + D (microcurrent administration before nephrectomy and until brain surgery), group 4-D + M (microcurrent administration for 4 weeks following brain surgery), and group 5-M (microcurrent administration for 4 weeks). Cerebral artery diameter and thickness and cerebral arterial wall extracellular matrix components were assessed. Among the five groups, group 2-D showed significantly higher cerebral arterial wall diameter (117.79 ± 17.05 µm) and proportion of collagen (42.46 ± 14.12%) and significantly lower arterial wall thickness (9.31 ± 2.26 µm) and proportion of smooth muscle cell (SMC) and elastin in the cerebral arterial wall (SMC: 38.05 ± 10.32%, elastin: 11.11 ± 6.97%). Additionally, group 4-D + M exhibited a non-significantly lower diameter (100.28 ± 25.99 µm) and higher thickness (12.82 ± 5.17 µm). Group 5-M demonstrated no evidence of toxicity in the liver and brain. The pilot study revealed that microcurrent is effective in preventing IADE development, although these beneficial effects warrant further investigation.


Assuntos
Artérias Cerebrais , Hipertensão , Animais , Camundongos , Projetos Piloto , Encéfalo , Elastina
2.
Biochem Biophys Res Commun ; 695: 149441, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176174

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor protein for Wnt ligands. Yet, their role in immune cell regulation remains elusive. Here we demonstrated that genetic deletion of LRP6 in macrophages using LysM-cre Lrp6fl/fl (Lrp6MKO) mice showed differential inhibition of inflammation in the bleomycin (BLM)-induced lung injury model and B16F10 melanoma lung metastasis model. Lrp6MKO mice showed normal immune cell populations in the lung and circulating blood in homeostatic conditions. In the BLM-induced lung injury model, Lrp6MKO mice showed a decreased number of monocyte-derived alveolar macrophages, reduced collagen deposition and alpha-smooth muscle actin (αSMA) protein levels in the lung. In B16F10 lung metastasis model, Lrp6MKO mice reduced lung tumor foci. Monocytic and granulocytic-derived myeloid-derived suppressor cells (M-MDSCs and G-MDSCs) were increased in the lung. In G-MDSCs, hypoxia-inducible factor 1α (HIF1α)+ PDL1+ population was markedly decreased but not in M-MDSCs. Taken together, our results show that the role of LRP6 in macrophages is differential depending on the inflammation microenvironment in the lung.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lesão Pulmonar , Neoplasias Pulmonares , Pneumonia , Animais , Camundongos , Bleomicina , Inflamação/genética , Inflamação/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Pneumonia/patologia , Microambiente Tumoral
3.
Small ; 20(19): e2310873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279618

RESUMO

Ferroptosis, characterized by the induction of cell death via lipid peroxidation, has been actively studied over the last few years and has shown the potential to improve the efficacy of cancer nanomedicine in an iron-dependent manner. Radiation therapy, a common treatment method, has limitations as a stand-alone treatment due to radiation resistance and safety as it affects even normal tissues. Although ferroptosis-inducing drugs help alleviate radiation resistance, there are no safe ferroptosis-inducing drugs that can be considered for clinical application and are still in the research stage. Here, the effectiveness of combined treatment with radiotherapy with Fe and hyaluronic acid-based nanoparticles (FHA-NPs) to directly induce ferroptosis, considering the clinical applications is reported. Through the induction of ferroptosis by FHA-NPs and apoptosis by X-ray irradiation, the therapeutic efficiency of cancer is greatly improved both in vitro and in vivo. In addition, Monte Carlo simulations are performed to assess the physical interactions of the X-rays with the iron-oxide nanoparticle. The study provides a deeper understanding of the synergistic effect of ferroptosis and X-ray irradiation combination therapy. Furthermore, the study can serve as a valuable reference for elucidating the role and mechanisms of ferroptosis in radiation therapy.


Assuntos
Ferroptose , Nanopartículas , Ferroptose/efeitos dos fármacos , Humanos , Nanopartículas/química , Animais , Raios X , Linhagem Celular Tumoral , Camundongos , Apoptose/efeitos dos fármacos , Ácido Hialurônico/química , Terapia Combinada
4.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686097

RESUMO

Src is emerging as a promising target in triple-negative breast cancer (TNBC) treatment because it activates survival signaling linked to the epidermal growth factor receptor. In this study, the effect of calcium supply on Src degradation was investigated to confirm underlying mechanisms and anticancer effects targeting TNBC. MDA-MB-231 cells, the TNBC cell line, were used. Calcium supply was feasible through lactate calcium salt (CaLac), and the applicable calcium concentration was decided by changes in the viability with different doses of CaLac. Expression of signaling molecules mediated by calcium-dependent Src degradation was observed by Western blot analysis and immunocytochemistry, and the recovery of the signaling molecules was confirmed following calpeptin treatment. The anticancer effect was investigated in the xenograft animal model. Significant suppression of Src was induced by calcium supply, followed by a successive decrease in the expression of epithelial growth factor receptor, RAS, extracellular signal-regulated kinase, and nuclear factor kappa B. Then, the suppression of cyclooxygenase-2 contributed to a significant deactivation of the prostaglandin E2 receptors. These results suggest that calcium supply has the potential to reduce the risk of TNBC. However, as this study is at an early stage to determine clinical applicability, close consideration is needed.


Assuntos
Cálcio , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Cálcio/farmacologia , Cálcio/uso terapêutico , Receptores ErbB , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Quinases da Família src
5.
Am J Pathol ; 193(9): 1130-1142, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263344

RESUMO

Orchestration of inflammation and tissue repair processes is critical to maintaining homeostasis upon tissue injury. Tissue fibrosis is a pathological process characterized by aberrant accumulation of extracellular matrix proteins, such as collagen, upon injury. Dickkopf1 (DKK1) is a quintessential Wnt antagonist. The role of DKK1 in bleomycin (BLM)-induced lung injury and fibrosis model remains elusive. This study shows that BLM-induced lung injury markedly elevated DKK1 protein expressions in the lungs in mice, consistent with human pulmonary fibrosis patient lung tissues. The elevated DKK1 levels coincided with immune cell infiltration and collagen deposition. Notably, the reduced expression of DKK1 in Dkk1 hypomorphic doubleridge (Dkk1d/d) mice abrogated BLM-induced lung inflammation and fibrosis. Immune cell infiltration, collagen deposition, expression of profibrotic cytokine transforming growth factor ß1 (TGF-ß1), and extracellular matrix protein-producing myofibroblast marker α-smooth muscle actin (α-SMA) were reduced in Dkk1d/d mice. Consistent with these results, local DKK1 antibody administration after BLM-induced lung injury substantially decreased lung inflammation and fibrosis phenotypes. Taken together, these results demonstrate that DKK1 is a proinflammatory and profibrotic ligand that promotes inflammation and fibrosis upon BLM-induced lung injury, placing it as an attractive molecular target for dysregulated pulmonary inflammation and tissue repair.


Assuntos
Lesão Pulmonar , Pneumonia , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/patologia , Bleomicina/toxicidade , Lesão Pulmonar/patologia , Pulmão/patologia , Fator de Crescimento Transformador beta1/metabolismo , Colágeno/metabolismo , Pneumonia/metabolismo , Inflamação/patologia
6.
Nat Commun ; 14(1): 1631, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959217

RESUMO

Acid sphingomyelinase (ASM) has been implicated in neurodegenerative disease pathology, including Alzheimer's disease (AD). However, the specific role of plasma ASM in promoting these pathologies is poorly understood. Herein, we explore plasma ASM as a circulating factor that accelerates neuropathological features in AD by exposing young APP/PS1 mice to the blood of mice overexpressing ASM, through parabiotic surgery. Elevated plasma ASM was found to enhance several neuropathological features in the young APP/PS1 mice by mediating the differentiation of blood-derived, pathogenic Th17 cells. Antibody-based immunotherapy targeting plasma ASM showed efficient inhibition of ASM activity in the blood of APP/PS1 mice and, interestingly, led to prophylactic effects on neuropathological features by suppressing pathogenic Th17 cells. Our data reveals insights into the potential pathogenic mechanisms underlying AD and highlights ASM-targeting immunotherapy as a potential strategy for further investigation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Camundongos Transgênicos , Esfingomielina Fosfodiesterase/genética , Modelos Animais de Doenças , Imunoterapia , Precursor de Proteína beta-Amiloide
7.
Front Immunol ; 14: 1247330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162655

RESUMO

Immune responses are crucial to maintaining tissue homeostasis upon tissue injury. Upon various types of challenges, macrophages play a central role in regulating inflammation and tissue repair processes. While an immunomodulatory role of Wnt antagonist Dickkopf1 (DKK1) has been implicated, the role of Wnt antagonist DKK1 in regulating macrophage polarization in inflammation and the tissue repair process remains elusive. Here we found that DKK1 induces gene expression profiles to promote inflammation and tissue repair in macrophages. Importantly, DKK1 induced various genes, including inflammation and tissue repair, via JNK (c-jun N-terminal kinase) in macrophages. Furthermore, DKK1 potentiated IL-13-mediated macrophage polarization and activation. The co-inhibition of JNK and STAT6 markedly decreased gene expressions relevant to inflammation and fibrosis by DKK1 and IL-13. Interestingly, thrombocyte-specific deletion of DKK1 in mice reduced collagen deposition and decreased Arg1, CD206, HIF1α, and IL1ß protein expressions in monocyte-derived alveolar macrophages in the acute sterile bleomycin (BLM)-induced lung injury model. These data suggested that thrombocytes communicate with macrophages via DKK1 to orchestrate inflammation and repair in this model. Taken together, our study demonstrates DKK1's role as an important regulatory ligand for macrophage polarization in the injury-induced inflammation and repair process in the lung.


Assuntos
Lesão Pulmonar Aguda , Plaquetas , Macrófagos , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Bleomicina/efeitos adversos , Plaquetas/metabolismo , Inflamação , Interleucina-13/metabolismo
8.
Cells ; 11(22)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429021

RESUMO

Macrophages are important players in the immune system that sense various tissue challenges and trigger inflammation. Tissue injuries are followed by inflammation, which is tightly coordinated with tissue repair processes. Dysregulation of these processes leads to chronic inflammation or tissue fibrosis. Wnt ligands are present both in homeostatic and pathological conditions. However, their roles and mechanisms regulating inflammation and tissue repair are being investigated. Here we aim to provide an overview of overarching themes regarding Wnt and macrophages by reviewing the previous literature. We aim to gain future insights into how tissue inflammation, repair, regeneration, and fibrosis events are regulated by macrophages.


Assuntos
Inflamação , Macrófagos , Humanos , Inflamação/patologia , Fibrose , Ligantes
9.
Mater Today Bio ; 17: 100457, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36388450

RESUMO

Ferroptosis, a cell death pathway that is induced in response to iron, has recently attracted remarkable attention given its emerging therapeutic potential in cancer cells. The need for a promising modality to improve chemotherapy's efficacy through this pathway has been urgent in recent years, and this non-apoptotic cell death pathway accumulates reactive oxygen species (ROS) and is subsequently involved in lipid peroxidation. Here, we report cancer-targeting nanoparticles that possess highly efficient cancer-targeting ability and minimal systemic toxicity, thereby leading to ferroptosis. To overcome the limit of actual clinical application, which is the ultimate goal due to safety issues, we designed safe nanoparticles that can be applied clinically. Nanoparticles containing ferroptosis-dependent iron and FDA-approved hyaluronic acid (FHA NPs) are fabricated by controlling physicochemical properties, and the FHA NPs specifically induce ROS production and lipid peroxidation in cancer cells without affecting normal cells. The excellent in vivo anti-tumor therapeutic effect of FHA NPs was confirmed in the A549 tumor-bearing mice model, indicating that the induction of FHA NP-mediated cell death via the ferroptosis pathway could serve as a powerful platform in anticancer therapy. We believe that this newly proposed FHA NP-induced ferroptosis strategy is a promising system that offers the potential for efficient cancer treatment and provides insight into the safe design of nanomedicines for clinical applications.

10.
J Leukoc Biol ; 111(4): 893-901, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890067

RESUMO

The human body encounters various challenges. Tissue repair and regeneration processes are augmented after tissue injury to reinstate tissue homeostasis. The Wnt pathway plays a crucial role in tissue repair since it induces target genes required for cell proliferation and differentiation. Since tissue injury causes inflammatory immune responses, it has become increasingly clear that the Wnt ligands can function as immunomodulators while critical for tissue homeostasis. The Wnt pathway and Wnt ligands have been studied extensively in cancer biology and developmental biology. While the Wnt ligands are being studied actively, how the Wnt antagonists and their regulatory mechanisms can modulate immune responses during chronic pathological inflammation remain elusive. This review summarizes DKK family proteins as immunomodulators, aiming to provide an overarching picture for tissue injury and repair. To this end, we first review the Wnt pathway components and DKK family proteins. Next, we will review DKK family proteins (DKK1, 2, and 3) as a new class of immunomodulatory protein in cancer and other chronic inflammatory diseases. Taken together, DKK family proteins and their immunomodulatory functions in chronic inflammatory disorders provide novel insights to understand immune diseases and make them attractive molecular targets for therapeutic intervention.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias , Humanos , Fatores Imunológicos , Ligantes , Neoplasias/metabolismo , Via de Sinalização Wnt
11.
Vaccines (Basel) ; 11(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36679898

RESUMO

Porcine parvovirus (PPV) causes reproductive failure in sows, and vaccination remains the most effective means of preventing infection. The NADL-2 strain has been used as a vaccine for ~50 years; however, it does not protect animals against genetically heterologous PPV strains. Thus, new effective and safe vaccines are needed. In this study, we aimed to identify novel PPV1 strains, and to develop PPV1 subunit vaccines. We isolated and sequenced PPV1 VP2 genes from 926 pigs and identified ten PPV1 strains (belonging to Groups C, D and E). We selected the Group D PPV1-82 strain as a vaccine candidate because it was close to the highly pathogenic 27a strain. The PPV1-82 VP2 protein was produced in Nicotiana benthamiana. It formed virus-like particles and exhibited a 211 agglutination value. The PPV1-190313 strain (Group E), isolated from an aborted fetus, was used as the challenging strain because it was pathogenic. The unvaccinated sow miscarried at 8 days postchallenge, and mummified fetuses were all PPV1-positive. By contrast, pregnant sows vaccinated with PPV1-82 VP2 had 9-11 Log2 antibody titers and produced normal fetuses after PPV1-190313 challenge. These results suggest the PPV1-82 VP2 subunit vaccine protects pregnant sows against a genetically heterologous PPV1 strain by inducing neutralizing antibodies.

12.
Immunohorizons ; 5(11): 898-908, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789484

RESUMO

Upon injury, inflammation and repair processes are orchestrated to maintain tissue homeostasis. The Wnt ligands play essential roles in cell differentiation and proliferation for tissue repair and regeneration. It is increasingly clear that Wnt ligands play crucial immune-modulatory roles in inflammatory diseases. It is predicted that comprehensive research regarding the cross-talk between nonimmune and immune cells in tissue injury and repair will flourish. The Wnt system and immune system interaction will be critical to understanding tissue injury, inflammation, and repair. In this study, we will first introduce the Wnt system and review the role of the Wnt system in tissue regeneration and repair. We will review the previous literature regarding how the Wnt ligands regulate the immune system. Next, we will discuss the current and future perspectives of Wnt ligands to target cancer and other immunological diseases. Finally, we will discuss the quintessential Wnt antagonist Dickkopf1 as an immunomodulatory ligand.


Assuntos
Fatores Imunológicos/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Regeneração/fisiologia , Cicatrização/fisiologia , Animais , Humanos , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
13.
Reprod Biol ; 21(3): 100469, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34144372

RESUMO

To assess whether the follicle-stimulating hormone (FSH) subunits observed in patients with gonadotroph adenomas (GA) can cause infertility, the effects of subunits and heterodimeric FSH on the in vitro follicle development were evaluated in mice. The partial forms of FSH in follicle culture did not induce development into pseudoantral follicles, whereas follicles cultured with native FSH developed into pseudoantral follicles and produced mature metaphase II oocyte. Therefore, intact FSH is needed for folliculogenesis, implying that production of FSH with a partial structure in GA may result in infertility.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Folículo Ovariano/efeitos dos fármacos , Animais , Feminino , Camundongos , Subunidades Proteicas/farmacologia , Técnicas de Cultura de Tecidos
14.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805293

RESUMO

Genome-wide studies focusing on elucidating the effects on cancer progression have enabled the consequent identification of a distinct subpopulation of pancreatic cancer cells with unstable genomic characteristics. Based on this background, deleterious changes by poly (adenosine diphosphate (ADP)-ribose) polymerase-1 (PARP)-1 have been concentrated in oncology. One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 in pancreatic cancer related to the aforementioned roles, along with the summary of recent approaches with PARP-1 inhibition in clinical studies targeting pancreatic cancer. This understanding could help to embrace the importance of targeting PARP-1 in the treatment of pancreatic cancer, which may present the potential to find out a variety of research topics that can be both challenged clinically and non-clinically.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Dano ao DNA , Reparo do DNA , Humanos , Estresse Oxidativo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transcrição Gênica
15.
Cancers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806179

RESUMO

Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.

16.
Polymers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810521

RESUMO

Cancer progression and migration in the tumor microenvironment are related to cell types and three-dimensional (3D) matrices. Therefore, developing biomimetic tumor models, including co-culture systems and a tunable 3D matrix, could play an essential role in understanding the cancer environment. Here, multicellular spheroids using human adipose-derived mesenchymal stem cells (hADSCs) and breast cancer cells (MDA-MB-231) within the 3D matrix were used as a tumor microenvironment (TME) mimicking platform. The amphiphilic peptide block copolymer and hyaluronic acid (HA) formed a self-assembled structure, which provides a biocompatible 3D environment for the cells. Multicellular spheroids were formed on the optimized plate and were observed as cell migration from a spheroid within a 3D matrix, such as the invasive and metastatic cancer of TME. This study suggests a new 3D platform using polymer complexes and the importance of tumor complexities, including various cell types and microenvironments.

17.
PLoS One ; 16(1): e0244635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33400697

RESUMO

Polycystic kidney disease (PKD) is a common genetic disorder that results in a proliferating and enlarging cyst and ultimately leads to loss of kidney function. Because an enlarged cyst is a primary factor for limited kidney function, the large cyst is surgically removed by laparoscopic deroofing or sclerosant. This a relatively nascent treatment method entails complications and sometimes fail due to the cyst fluid refilling and infection. This study proposes using a more stable and effective polidocanol foam with glycerol and Rose Bengal (GRP form) to prevent cyst regeneration and irritation, which is caused by the required body movement during the treatment. Specifically, the foam retention time and viscosity were increased by adding glycerol up to 10% (w/v). The GRP form inhibited cellular proliferation and disrupted cellular junctions, e-cadherin, and cyst formation, demonstrated by the LDH, Live and Dead, and re-plating culture assays. The GRP foam was shown to be a safe and effective treatment as a commercial grade polidocanol foam form by an in vivo study in which subcutaneously injected mice injected with commercial 3% polidocanol, and the GRP foam showed no difference in inflammation. Thus, this study provides an advanced polidocanol form by adding glycerol and Rose-Bengal to help existing sclerotherapy.


Assuntos
Glicerol/uso terapêutico , Polidocanol/uso terapêutico , Doenças Renais Policísticas/terapia , Rosa Bengala/uso terapêutico , Soluções Esclerosantes/uso terapêutico , Animais , Materiais Biocompatíveis/uso terapêutico , Cães , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos BALB C , Doenças Renais Policísticas/patologia
18.
Mol Pharm ; 18(1): 101-112, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33241681

RESUMO

We report a prodrug, Glu-DAPPD, to overcome the shortcomings of an anti-neuroinflammatory molecule, N,N'-diacetyl-p-phenylenediamine (DAPPD), in biological applicability for potential therapeutic applications. We suspect that Glu-DAPPD can release DAPPD through endogenous enzymatic bioconversion. Consequently, Glu-DAPPD exhibits in vivo efficacies in alleviating neuroinflammation, reducing amyloid-ß aggregate accumulation, and improving cognitive function in Alzheimer's disease transgenic mice. Our studies demonstrate that the prodrug approach is suitable and effective toward developing drug candidates against neurodegeneration.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Inflamação/tratamento farmacológico , Neurônios/efeitos dos fármacos , Pró-Fármacos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/metabolismo , Fenilenodiaminas/farmacologia
19.
Biomater Res ; 24(1): 23, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33334374

RESUMO

BACKGROUND: The aqueous solution behavior of thermosensitive PEG-PA block copolymers as well as secondary structure of PA is expected to significantly change through modification of the hydrophobic PA by long chain alkyl (C18) groups with different configurations. METHOD: Oleoyl and stearoyl (C18) groups were conjugated to poly(ethylene glycol)-poly(L-alanine) (PEG-PA; EG45A16) diblock copolymers to compare their conjugation effect on nano-assemblies and corresponding aqueous solution behavior of the polymers. RESULTS: Due to the nature of a hydrophilic PEG block and a hydrophobic PA or C18-modified PA, PEG-PA, oleoyl group-conjugated PEG-PA (PEG-PAO), and stearoyl group-conjugated PEG-PA (PEG-PAS) block copolymers form micelles in water. Compared with PEG-PA, the micelle size of PEG-PAO and PEG-PAS increased. Circular dichroism and FTIR spectra of aqueous polymer solutions showed that ß sheet content increased, whereas α helix content decreased by C18 modification of PEG-PA. PEG-PAS showed better performance in ice crystallization inhibition than PEG-PAO. The sol-to-gel transition temperatures of aqueous PEG-PAO solutions were 25-37 °C higher than those of aqueous PEG-PA solutions, whereas aqueous PEG-PAS solutions remained as gels in the temperature range of 0-80 °C. 1H-NMR spectra indicated that the oleoyl groups increased core mobility, whereas stearoyl groups decreased the core mobility of the micelles in water. The difference in micromobility between PAO and PAS interfered or promoted gelation of the aqueous polymer solutions, respectively. CONCLUSIONS: This study suggests that a hydrophobic C18-modification of polypeptide induces α helix-to-ß sheet transition of the polypeptide; however, aqueous solution behaviors including ice recrystallization inhibition and gelation are significantly affected by the nature of the hydrophobic molecule.

20.
Mediators Inflamm ; 2020: 3572809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714090

RESUMO

The objective of this study was to evaluate the effects of peptides derived from synbiotics on improving inflammatory bowel disease (IBD). Five-week-old male C57BL/6 mice were administered with dextran sulfate sodium (DSS) via drinking water for seven days to induce IBD (IBD group). The mice in the IBD group were orally administered with PBS (IBD-PBS-positive control), Lactobacillus gasseri 505 (IBD-Pro), fermented powder of CT extract with L. gasseri 505 (IBD-Syn), ß-casein: LSQSKVLPVPQKAVPYPQRDMP (IBD-Pep 1), or α s2-casein: VYQHQKAMKPWIQPKTKVIPYVRYL (IBD-Pep 2) (both peptides are present in the synbiotics) for four more days while inducing IBD. To confirm IBD induction, the weights of the animals and the disease activity index (DAI) scores were evaluated once every two days. Following treatment of probiotics, synbiotics, or peptides for 11 days, the mice were sacrificed. The length of the small and large intestines was measured. The expression of the proinflammatory cytokines IL-1ß, IL-6, TNF-α, and COX-2 in the large intestine was measured. Large intestine tissue was fixed in 10% formalin and stained with hematoxylin and eosin for histopathological analysis. The body weights decreased and DAI scores increased in the IBD group, but the DAI scores were lower in the IBD-Pep 2 group than those in the IBD group treated with PBS, Pro, Syn, or Pep 1. The lengths of the small and large intestines were shorter in the IBD group than in the group without IBD, and the expression levels of the proinflammatory cytokines were lower (p < 0.05) in the IBD-Pep 2 group than those in the IBD-PBS-positive control group. In addition, histopathological analysis showed that IBD was ameliorated in the Pep 2-treated group. These results indicate that Pep 2 derived from α s2-casein was effective in alleviating IBD-associated inflammation. Thus, we showed that these peptides can alleviate inflammation in IBD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Lactobacillus gasseri/fisiologia , Moraceae/química , Animais , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Fermentação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simbióticos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA